Algorithms - String Sorts
Key-indexed counting
Sort an array a[] of N integers between 0 and R-1.
int N = a.length;
// the temp array during sorting
int[] aux = new int[N];
// the index of count[] is the integer
int[] count = new int[R+1];
// count frequencies of N integers
// offset by one(a[0] = 0)
for (int i = 0; i < N; i++) {
count[a[i]+1]++;
}
// compute frequency cumulates which specify destinations
// (how many intgers < the integer r)
for (int r = 0; r < R; R++) {
count[r+1] += count[r];
}
// access cumulates using key as index to move items
for (int i = 0; i < N; i++) {
aux[count[a[i]]++] = a[i];
}
// copy back
for (int i = 0; i < N; i++) {
a[i] = aux[i];
}
- Key-indexed counting is stable.
Least-significant-digit-first(LSD) String Radix Sort
- consider characters from right to left
- stably sort using $d^th$ character as the key (using key-indexed counting)
public class LSD {
// fixed-length W strings
public static void sort(String[] a, int w) {
int R = 256;
int N = a.length;
String[] aux = new String[N];
for (int d = W-1; d >= 0; d--) {
int[] count = new int[R+1];
// key-indexed counting
}
}
}
Application: Sort one million 32-bit integers.
Most-significant-digit-first(MSD) String Radix Sort
- partition array into R pieces according to first character (use key-indexed counting)
- Recursively sort all strings that start with each character (key-index counting)
public static void sort(String[] a) {
// can recycle aux
String[] aux = new String[a.length];
sort(a, 0, a.length-1, 0, aux);
}
// sort from a[lo] to a[hi], starting at the dth character
private static void sort(String[] a, int lo, int hi, int d, String[] aux) {
if (hi <= lo) return;
// can not recycle count
int[] count = new int[R+2];
// compute frequency counts
for (int i = lo; i <= hi; i++) {
count[charAt(a[i], d) + 2]++;
}
// compute frequency cumulates to transform counts to indicies
for (int r = 0; r < R; R++) {
count[r+1] += count[r];
}
// access cumulates using key as index to move items
for (int i = lo; i < hi; i++) {
aux[count[charAt(a[i], d)+1]++] = a[i];
}
// copy back
for (int i = lo; i < hi; i++) {
a[i] = aux[i - lo];
}
// recursively sort R subarrays for each character
for (int r = 0; r < R; r++) {
sort(a, lo + count[r], lo + count[r+1] -1, d + 1, aux);
}
}
private static int charAt(String s, int d) {
if (d < s.length()) {
return s.charAt(d);
} else {
return -1;
}
}
Observations:
- Much too slow for small subarrays.
- Huge number of small subarrays (because of recursion).
Solution: Cutoff to insertion sort for small subarrays.
private static final int CUTOFF = 15; // cutoff to insertion sort
// sort from a[lo] to a[hi], starting at the dth character
private static void sort(String[] a, int lo, int hi, int d, String[] aux) {
// cutoff to insertion sort for small subarrays
if (hi <= lo + CUTOFF) {
for (int i = lo; i <= hi; i++) {
for (int j = i; j > lo && less(a[j], a[j-1], d); j--) {
// exchange a[i] and a[j-1]
exch(a, j ,j-1);
}
}
return;
}
// ...
}
// is v less than w, starting at character d
private static boolean less(String v, String w, int d) {
for (int i = d; i < Math.min(v.length(), w.length()); i++) {
if (v.charAt(i) < w.charAt(i)) return true;
if (v.charAt(i) > w.charAt(i)) return false;
}
return v.length() < w.length();
}
3-way Radix QuickSort
Disadvantages of MSD string sort
- Extra space for aux[]
- Extra space for count[]
- Inner loop has a lot of instructions
- Accesses memory randomly (cache inefficient)
Disadvantages of standard quicksort:
- Linearithmic number of string compares (not linear)
- Has to rescan many characters in keys with long prefix matches.
3-way string quicksort does 3-way partitioning on the $d^th$ character.
- Less overhead than R-way partitioning in MSD string sort
- Does not re-examine characters equal to the partitioning char (but does re-examine characters not equal to the partitioning char).
- ~$2N\ln{N}$ character comparions on average for random strings
- Avoid re-comparing long common prefixes
public static void sort(String[] a) {
sort(a, 0, a.length - 1, 0);
}
private static void sort(String[] a, int lo, int hi, int d) {
if (hi <= lo) return;
int lt =lo, gt = hi;
int v = charAt(a[lo], d);
int i = lo + 1;
while (i <= gt) {
int t = charAt(a[i], d);
if (t < v) exch(a, lt++)
else if (t > v) exch(a, i, gt--)
else i++;
}
sort(a, lo, lt-1, d);
// v is the char at position d, so if v < 0, that's the end of the string a[lo]
if (v >= 0) sort (a, lt, gt, d+1);
sort(a, gt+1, hi, d);
}
Manber-Myers MSD algorithm
- Phase 0; sort on first character using key-indexed counting sort
- Phase i: given array of suffixes sorted on first $2^{i-1}$ characters, create array of suffixes sorted on first $2^i$ characters.
TODO: implementation
Which algorithm to use
TODO: Textbook Pg.724 performance characteristics of string-sorting algorithms